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Introduction
Extraction of shapes from images of physical

experiments is very important for research at Los
Alamos National Laboratory. Achieving a truth-
ful segmentation of the shapes from the back-
ground usually requires first denoising of the im-
ages, and then applying a specific segmentation
algorithm which can range from simple thresh-
olding to complex level set segmentation. In our
work we modify a standard model for image de-
noising, which results in automatic segmentation
of the image without having an exta step. We ac-
complish this through forcing the model not only
to remove the noise from the image but also to
strongly emphasize the edges in it.

Total Variation Denoising and Seg-
mentation

Two of the basic problems in image processing
are denoising and segmentation. They are closely
related, with similar objectives: given a noisy im-
age, return a noise-free image while preserving
important information from the original. Perhaps
the greatest amount of information in an image is
contained in the edges of objects. Consequently,
preserving edges in an image is of paramount
importance for both denoising and segmentation.
One can regard the two problems as differing
only in degree: in denoising, one seeks to remove
noise and as little else as possible, while in seg-
mentation, the goal is to remove all variation ex-
cept for the edges of image regions.

Thus it is not surprising that there are mod-
els that are used for both problems. The best-
known example of this is the Mumford-Shah
functional [1]. When the image we are trying to
reconstruct is assumed to be piecewise constant

and its values are restricted to 0 and 1 this func-
tional becomes equivalent to the restriction to bi-
nary functions of Rudin-Osher-Fatemi total vari-
ation denoising model [2]:

F(u) =
Z

Ω

|∇u|+λ

Z
Ω
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Here d is the noisy data, u is the reconstructed
image, and the minimizer of the functional is the
actual solution. λ is the regularization parame-
ter which balances the relative effect of the two
terms.

In our work, we simultaneously modify the reg-
ularization of edges and the image away from the
edges, by introducing a small exponent p > 0:

Fp(u) =
1
p
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This has two effects. First, small but nonzero val-
ues of |∇u| are penalized more, which makes the
minimizer tend to be piecewise constant. We thus
obtain segmentation without explicitly assuming
a particular form for u. (This is the same phe-
nomenon as the well known “staircasing” artifact
of the ROF model, taken to a greater degree.)
Second, as explained in [3],

R
|∇u|p places much

weaker penalty on edges, than that of total vari-
ation. This allows the segmentation to capture
the boundaries of complicated regions more ac-
curately.

Solution and Results
Fp(u) is non-convex in this case, so the exis-

tence and uniqueness of a minimizer are not guar-
anteed. That is why this model has not been
thouroughly explored. Surprisingly, in practice,
the lack of convexity does not seem to cause prob-
lems. In order to find a minimum of the functional
in (2) we use a straightfoward generalization of
the fixed-point method of Vogel and Oman [4].
We apply the algorithm with p = 0.01 to the cam-
eraman image corrupted by Gaussian noise with
standard deviation of 0.1 (Figure 1(a)). For an
initial case we first use the noisy image. The re-
sult we obtain after 20 iterations is displayed in
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Figure 1(c). Although the initial image is a com-
plex grayscale image, which even without noise
is a difficult segmentation problem, the final im-
age consists of only a few grayscale levels. The
number of the final regions and the crudeness of
their boundaries can be regulated through the reg-
ularization parameter λ. If we want the final im-
age to be close to a binary image, we can imple-
ment the algorithm using as a starting point an
image obtained by thresholding the noisy image.
The result only after 10 iterations has even fewer
grayscale levels (Figure 1(e)). The observation
that different starting points lead to different final
results shows the existence of local minima. This
allows us to vary the segmentation of the image,
which will reflect properties of the initial guess.

The performance of the method does not de-
pend exclusively on having an L2-norm as a data
fidelity term. For example, we can implement it
with an L1-norm, known for removing salt-and-
pepper noise. On the cameraman image in Fig-
ure 1(b), in which 10% of the pixels have been
corrupted by salt and pepper noise, the algorithm
exhibits the same behavior. Results with two dif-
ferent starting points are shown in Figures 1(d)
and 1(f). A Poisson noise data fidelity term can
also be fit into the model. This flexibility of the
algorithm makes it applicable to a wide variety of
segmentation problems.
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